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Preface 

The field of signal and image processing encompasses the theory and practice of 

algorithms and hardware that convert signals produced by artificial or natural means into a 

form useful for a specific purpose. The signals might be speech, audio, images, video, sensor 

data, telemetry, electrocardiograms, or seismic data, among others; possible purposes include 

transmission, display, storage, interpretation, classification, segmentation, or diagnosis.  

Current research in digital signal processing includes robust and low complexity filter 

design, signal reconstruction, filter bank theory, and wavelets. In statistical signal processing, 

the areas of research include adaptive filtering, learning algorithms for neural networks, 

spectrum estimation and modeling, and sensor array processing with applications in sonar and 

radar. Image processing work is in restoration, compression, quality evaluation, computer 

vision, and medical imaging. Speech processing research includes modeling, compression, and 

recognition.  Video compression, analysis, and processing projects include error concealment 

technique for 3D compressed video, automated and distributed crowd analytics, stereo-to-auto 

stereoscopic 3D video conversion, virtual and augmented reality.   

 

 

 

 

 

 

 

 

 

 



 

Techniques in digital image processing 

Pharkavi.M, II Year 

Digital image processing is the use of computer algorithms to perform image processing 

on digital images. As a subcategory or field of digital signal processing, digital image processing 

has many advantages over analog image processing. It allows a much wider range of algorithms 

to be applied to the input data and can avoid problems such as the build-up of noise and signal 

distortion during processing. Since images are defined over two dimensions digital image 

processing may be modeled in the form of multidimensional systems. 

  Many of the techniques of digital image processing, or digital picture processing as it 

often was called, were developed in the 1960s at the Jet Propulsion Laboratory, Massachusetts 

Institute of Technology, Bell Laboratories, University of Maryland, and a few other research 

facilities, with application to satellite imagery, wire-photo standards conversion, medical 

imaging, videophone, character recognition, and photograph enhancement. The cost of 

processing was fairly high, however, with the computing equipment of that era. That changed 

in the 1970s, when digital image processing proliferated as cheaper computers and dedicated 

hardware became available. Images then could be processed in real time, for some dedicated 

problems such as television standards conversion. As general-purpose computers became 

faster, they started to take over the role of dedicated hardware for all but the most specialized 

and computer-intensive operations. With the fast computers and signal processors available in 

the 2000s, digital image processing has become the most common form of image processing 

and generally, is used because it is not only the most versatile method, but also the cheapest. 

Digital image processing technology for medical applications was inducted into the 

Space Foundation Space Technology Hall of Fame in 1994.  

Feature extraction: 

Feature extraction starts from an initial set of measured data and builds derived values 

intended to be informative and non-redundant, facilitating the subsequent learning and 

generalization steps, and in some cases leading to better human interpretations. Feature 

extraction is related to dimensionality reduction. 

When the input data to an algorithm is too large to be processed and it is suspected to 

be redundant, then it can be transformed into a reduced set of features .Determining a subset 

of the initial features is called feature selection. The selected features are expected to contain 

the relevant information from the input data, so that the desired task can be performed by 

using this reduced representation instead of the complete initial data. 
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Feature extraction involves reducing the amount of resources required to describe a 

large set of data. When performing analysis of complex data one of the major problems stems 

from the number of variables involved. Analysis with a large number of variables generally 

requires a large amount of memory and computation power, also it may cause a classification 

algorithm to over fit to training samples and generalize poorly to new samples. Feature 

extraction is a general term for methods of constructing combinations of the variables to get 

around these problems while still describing the data with sufficient accuracy. Many machine 

learning practitioners believe that properly optimized feature extraction is the key to effective 

model construction.  
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Time and frequency analysis in image processing 

Padmasaranya.V, II Year 

 

              Signal processing concerns the analysis, synthesis, and modification of signals, which 

are broadly defined as functions conveying "information about the behavior or attributes of 

some phenomenon", such as sound, images, and biological measurements. For example, signal 

processing techniques are used to improve signal transmission fidelity, storage efficiency, and 

subjective quality, and to emphasize or detect components of interest in a measured signal.  

Digital signal processing (DSP) is the use of digital processing, such as by computers or 

more specialized digital signal processors, to perform a wide variety of signal processing 

operations. The signals processed in this manner are a sequence of numbers that represent 

samples of a continuous variable in a domain such as time, space, or frequency. 

Digital signal processing and analog signal processing are subfields of signal processing. 

DSP applications include audio and speech processing, sonar, radar and other sensor array 

processing, spectral density estimation, statistical signal processing, digital image processing, 

signal processing for telecommunications, control systems, biomedical engineering, seismology, 

among others. 

DSP can involve linear or nonlinear operations. Nonlinear signal processing is closely 

related to nonlinear system identification and can be implemented in the time, frequency, and 

spatiotemporal domains. 

The application of digital computation to signal processing allows for many advantages 

over analog processing in many applications, such as error detection and correction in 

transmission as well as data compression. DSP is applicable to both streaming data and static 

data. 

To digitally analyze and manipulate an analog signal, it must be digitized with an analog-

to-digital converter (ADC). Sampling is usually carried out in two stages, discretization and 

quantization. Discretization means that the signal is divided into equal intervals of time, and 

each interval is represented by a single measurement of amplitude. Quantization means each 

amplitude measurement is approximated by a value from a finite set. Rounding real numbers to 

integers is an example. 

The Nyquist–Shannon sampling theorem states that a signal can be exactly 

reconstructed from its samples if the sampling frequency is greater than twice the highest 

frequency component in the signal. In practice, the sampling frequency is often significantly 

higher than twice the Nyquist frequency. 
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Theoretical DSP analyses and derivations are typically performed on discrete-time signal 

models with no amplitude inaccuracies created by the abstract process of sampling. Numerical 

methods require a quantized signal, such as those produced by an ADC. The processed result 

might be a frequency spectrum or a set of statistics. But often it is another quantized signal that 

is converted back to analog form by a digital-to-analog converter (DAC). 

In DSP, engineers usually study digital signals in one of the following domains: time 

domain  spatial domain frequency domain, and wavelet domains. They choose the domain in 

which to process a signal by making an informed assumption as to which domain best 

represents the essential characteristics of the signal and the processing to be applied to it. A 

sequence of samples from a measuring device produces a temporal or spatial domain 

representation, whereas a discrete Fourier transform produces the frequency domain 

representation. 

The most common processing approach in the time or space domain is enhancement of 

the input signal through a method called filtering. Digital filtering generally consists of some 

linear transformation of a number of surrounding samples around the current sample of the 

input or output signal. There are various ways to characterize filters 

 A linear filter is a linear transformation of input samples; other filters are nonlinear. Linear 

filters satisfy the superposition principle. if an input is a weighted linear combination of 

different signals, the output is a similarly weighted linear combination of the 

corresponding output signals. 

 A causal filter uses only previous samples of the input or output signals; while a non-

causal filter uses future input samples. A non-causal filter can usually be changed into a 

causal filter by adding a delay to it. 

 A time-invariant filter has constant properties over time; other filters such as adaptive 

filters change in time. 

 A stable filter produces an output that converges to a constant value with time or remains 

bounded within a finite interval. An unstable filter can produce an output that grows 

without bounds, with bounded or even zero input. 

 A finite impulse response filter uses only the input signals, while an infinite impulse 

response filter uses both the input signal and previous samples of the output signal. FIR 

filters are always stable, while IIR filters may be unstable. 

A filter can be represented by a block diagram, which can then be used to derive a 

sample processing algorithm to implement the filter with hardware instructions. A filter may 

also be described as a difference equation, a collection of zeros and poles or an impulse 

response or step response. 
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The output of a linear digital filter to any given input may be calculated by convolving 

the input signal with the impulse response. 

Frequency domain  

Signals are converted from time or space domain to the frequency domain usually 

through use of the Fourier transform. The Fourier transform converts the time or space 

information to a magnitude and phase component of each frequency. With some applications, 

how the phase varies with frequency can be a significant consideration. Where phase is 

unimportant, often the Fourier transform is converted to the power spectrum, which is the 

magnitude of each frequency component squared. 

The most common purpose for analysis of signals in the frequency domain is analysis of 

signal properties. The engineer can study the spectrum to determine which frequencies are 

present in the input signal and which are missing. Frequency domain analysis is also called 

spectrum- or spectral analysis. 

Filtering, particularly in non-real time work can also be achieved in the frequency 

domain, applying the filter and then converting back to the time domain. This can be an 

efficient implementation and can give essentially any filter response including excellent 

approximations to brick wall filters. 

There are some commonly-used frequency domain transformations. For example, the 

cestrum converts a signal to the frequency domain through Fourier transform, takes the 

logarithm, then applies another Fourier transform. This emphasizes the harmonic structure of 

the original spectrum. 

Digital filters come in both IIR and FIR types. FIR filters have many advantages but are 

computationally more demanding. Whereas FIR filters are always stable, IIR filters have 

feedback loops that may resonate when stimulated with certain input signals. The Z-transform 

provides a tool for analyzing potential stability issues of digital IIR filters. It is analogous to the 

Laplace transform, which is used to design analog IIR filters. 

In numerical analysis and functional analysis, a discrete wavelet transform is any 

wavelet transform for which the wavelets are discretely sampled. As with other wavelet 

transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures 

both frequency and location information. The accuracy of the joint time-frequency resolution is 

limited by the uncertainty principle of time-frequency. 
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Pattern recognition in image processing 

Sanchna.T, II Year 

 

Pattern recognition is a branch of machine learning that focuses on the recognition of 

patterns and regularities in data, although it is in some cases considered to be nearly 

synonymous with machine learning. Pattern recognition systems are in many cases trained 

from labeled training data but when no labeled data are available other algorithms can be used 

to discover previously unknown patterns. 

The terms pattern recognition, machine learning, data mining and knowledge discovery 

in databases are hard to separate, as they largely overlap in their scope. Machine learning is the 

common term for supervised learning methods and originates from artificial intelligence, 

whereas KDD and data mining have a larger focus on unsupervised methods and stronger 

connection to business use. Pattern recognition has its origins in engineering, and the term is 

popular in the context of computer vision: a leading computer vision conference is named 

Conference on Computer Vision and Pattern Recognition. In pattern recognition, there may be 

a higher interest to formalize, explain and visualize the pattern, while machine learning 

traditionally focuses on maximizing the recognition rates. Yet, all of these domains have 

evolved substantially from their roots in artificial intelligence, engineering and statistics, and 

they've become increasingly similar by integrating developments and ideas from each other. 

In machine learning, pattern recognition is the assignment of a label to a given input 

value. In statistics, discriminant analysis was introduced for this same purpose in 1936. An 

example of pattern recognition is classification, which attempts to assign each input value to 

one of a given set of classes. However, pattern recognition is a more general problem that 

encompasses other types of output as well. Other examples are regression, which assigns a 

real-valued output to each input; sequence labeling, which assigns a class to each member of a 

sequence of values  and parsing, which assigns a parse tree to an input sentence, describing the 

syntactic structure of the sentence. 

 

Pattern recognition algorithms: 

 

Pattern recognition algorithms generally aim to provide a reasonable answer for all 

possible inputs and to perform most likely matching of the inputs, considering their statistical 

variation. This is opposed to pattern matching algorithms, which look for exact matches in the 

input with pre-existing patterns. A common example of a pattern-matching algorithm is regular 

expression matching, which looks for patterns of a given sort in textual data and is included in 

the search capabilities of many text editors and word processors. In contrast to pattern 
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recognition, pattern matching is not generally a type of machine learning, although pattern-

matching algorithms can sometimes succeed in providing similar-quality output of the sort 

provided by pattern-recognition algorithms. 

Pattern recognition is generally categorized according to the type of learning procedure 

used to generate the output value. Supervised learning assumes that a set of training data has 

been provided, consisting of a set of instances that have been properly labeled by hand with 

the correct output. A learning procedure then generates a model that attempts to meet two 

sometimes conflicting objectives: Perform as well as possible on the training data and 

generalize as well as possible to new. Unsupervised learning, on the other hand, assumes 

training data that has not been hand-labeled, and attempts to find inherent patterns in the data 

that can then be used to determine the correct output value for new data instances. A 

combination of the two that has recently been explored is semi-supervised learning, which uses 

a combination of labeled and unlabeled. Note that in cases of unsupervised learning, there may 

be no training data at all to speak of; in other words, and the data to be labeled is the training 

data. 

Sometimes different terms are used to describe the corresponding supervised and 

unsupervised learning procedures for the same type of output. The unsupervised equivalent of 

classification is normally known as clustering, based on the common perception of the task as 

involving no training data to speak of, and of grouping the input data into clusters based on 

some inherent similarity measure  rather than assigning each input instance into one of a set of 

pre-defined classes. Note also that in some fields, the terminology is different: For example, in 

community ecology, the term "classification" is used to refer to what is commonly known as 

clustering. 

The piece of input data for which an output value is generated is formally termed an 

instance. The instance is formally described by a vector of features, which together constitute a 

description of all known characteristics of the instance. These feature vectors can be seen as 

defining points in an appropriate multidimensional space, and methods for manipulating 

vectors in vector spaces can be correspondingly applied to them, such as computing the dot 

product or the angle between two vectors. Typically, features are either categorical also known 

as nominal, i.e., consisting of one of a set of unordered items, such as a gender of "male" or 

"female", or a blood type of "A", "B", "AB" or "O", ordinal consisting of one of a set of ordered 

items, e.g., "large", "medium" or "small", integer-valued e.g., a count of the number of 

occurrences of a particular word in an email or real-valued e.g., a measurement of blood 

pressure Often, categorical and ordinal data are grouped together; likewise for integer-valued 

and real-valued data. Furthermore, many algorithms work only in terms of categorical data and 

require that real-valued or integer-valued data be discretized into groups. 
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Many common pattern recognition algorithms are probabilistic in nature, in that they 

use statistical inference to find the best label for a given instance. Unlike other algorithms, 

which simply output a "best" label, often probabilistic algorithms also output a probability of 

the instance being described by the given label. In addition, many probabilistic algorithms 

output a list of the N-best labels with associated probabilities, for some value of N, instead of 

simply a single best label. When the number of possible labels is fairly small (e.g., in the case of 

classification), N may be set so that the probability of all possible labels is output. Probabilistic 

algorithms have many advantages over non-probabilistic algorithms: 

 They output a confidence value associated with their choice. Some other algorithms may 

also output confidence values, but in general, only for probabilistic algorithms is this value 

mathematically grounded in probability theory. Non-probabilistic confidence values can in 

general not be given any specific meaning, and only used to compare against other 

confidence values output by the same algorithm. 

 Correspondingly, they can abstain when the confidence of choosing any particular output 

is too low. 

 Because of the probabilities output, probabilistic pattern-recognition algorithms can be 

more effectively incorporated into larger machine-learning tasks, in a way that partially or 

completely avoids the problem of error propagation. 
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Wavelet transform 

Monisha.A, II Year 

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases, and 

then decreases back to zero. It can typically be visualized as a "brief oscillation" like one 

recorded by a seismograph or heart monitor. Generally, wavelets are intentionally crafted to 

have specific properties that make them useful for signal processing. Using a "reverse, shift, 

multiply and integrate" technique called convolution, wavelets can be combined with known 

portions of a damaged signal to extract information from the unknown portions. 

A wavelet could be created to have a frequency of Middle C and a short duration of 

roughly a 32nd note. If this wavelet were to be convolved with a signal created from the 

recording of a song, then the resulting signal would be useful for determining when the Middle 

C note was being played in the song. Mathematically, the wavelet will correlate with the signal 

if the unknown signal contains information of similar frequency. This concept of correlation is at 

the core of many practical applications of wavelet theory. 

As a mathematical tool, wavelets can be used to extract information from many kinds of 

data, including – but certainly not limited to – audio signals and images. Sets of wavelets are 

generally needed to analyze data fully. A set of "complementary" wavelets will decompose data 

without gaps or overlap so that the decomposition process is mathematically reversible. Thus, 

sets of complementary wavelets are useful in wavelet based compression/decompression 

algorithms where it is desirable to recover the original information with minimal loss. 

In formal terms, this representation is a wavelet series representation of a square-

integral  function with respect to either a complete, orthonormal set of basic functions, or an 

over complete set or frame of a vector space, for the Hilbert space of square integral functions. 

This is accomplished through coherent states. 

In any discretized wavelet transform, there are only a finite number of wavelet 

coefficients for each bounded rectangular region in the upper half plane. Still, each coefficient 

requires the evaluation of an integral. In special situations this numerical complexity can be 

avoided if the scaled and shifted wavelets form a multiresolution analysis. This means that 

there has to exist an auxiliary function, the father wavelet φ in L2(R), and that is an integer. A 

typical choice is a = 2 and b = 1. The most famous pair of father and mother wavelets is the 

Daubechies 4-tap wavelet. Note that not every orthonormal discrete wavelet basis can be 

associated to a multiresolution analysis; for example, the Journee wavelet admits no 

multiresolution analysis.  

Multiplication with a rectangular window in the time domain corresponds to 

convolution with a function in the frequency domain, resulting in spurious ringing artifacts for 
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short/localized temporal windows. With the Continuous-time Fourier Transform and this 

convolution is with a delta function in Fourier space, resulting in the true Fourier transform of 

the signal. The window function may be some other apodizing filter, such as a Gaussian. The 

choice of windowing function will affect the approximation error relative to the true Fourier 

transform. 

A given resolution cell’s time-bandwidth product may not be exceeded with the STFT. All 

STFT basis elements maintain a uniform spectral and temporal support for all temporal shifts or 

offsets, thereby attaining an equal resolution in time for lower and higher frequencies. The 

resolution is purely determined by the sampling width. 

In contrast, the wavelet transform’s multiresolution properties enables large temporal 

supports for lower frequencies while maintaining short temporal widths for higher frequencies 

by the scaling properties of the wavelet transform. This property extends conventional time-

frequency analysis into time-scale analysis.  

STFT time-frequency atoms (left) and DWT time-scale atoms (right). The time-frequency 

atoms are four different basis functions used for the STFT. The time-scale atoms of the DWT 

achieve small temporal widths for high frequencies and good temporal widths for low 

frequencies with a single transform basis set. 

The discrete wavelet transform is less computationally complex, taking O(N) time as 

compared to O(N log N) for the fast Fourier transform. This computational advantage is not 

inherent to the transform but reflects the choice of a logarithmic division of frequency, in 

contrast to the equally spaced frequency divisions of the FFT which uses the same basis 

functions as DFT (Discrete Fourier Transform). It is also important to note that this complexity 

only applies when the filter size has no relation to the signal size. A wavelet without compact 

support such as the Shannon wavelet would require O (N2). (For instance, a logarithmic Fourier 

Transform also exists with O(N) complexity, but the original signal must be sampled 

logarithmically in time, which is only useful for certain types of signals.  

Scaling filter  

An orthogonal wavelet is entirely defined by the scaling filter – a low-pass finite impulse 

response (FIR) filter of length 2N and sum 1. In biorthogonal wavelets, separate decomposition 

and reconstruction filters are defined. 

For analysis with orthogonal wavelets the high pass filter is calculated as the quadrature 

mirror filter of the low pass, and reconstruction filters are the time reverse of the 

decomposition filters. 

Daubechies and Symlet wavelets can be defined by the scaling filter. 
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Scaling function 

 

Wavelets are defined by the wavelet function ψ (t) (i.e. the mother wavelet) and scaling 

function φ (t) (also called father wavelet) in the time domain. 

  The wavelet function is in effect a band-pass filter and scaling it for each level halves its 

bandwidth. This creates the problem that to cover the entire spectrum, an infinite number of 

levels would be required. The scaling function filters the lowest level of the transform and 

ensures all the spectrum is covered. See for a detailed explanation. 

For a wavelet with compact support, φ (t) can be considered finite in length and is 

equivalent to the scaling filter g. 

Wavelet function 

The wavelet only has a time domain representation as the wavelet function ψ (t). 

For instance, Mexican hat wavelets can be defined by a wavelet function. See a list of a 

few Continuous wavelets. 
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Singular value decomposition 

Priyanka, II Year 

Singular Value Decomposition (SVD) has recently emerged as a new paradigm for 

processing different types of images. SVD is an attractive algebraic transform for image 

processing applications. The paper proposes an experimental survey for the SVD as an efficient 

transform in image processing applications. Despite the well-known fact that SVD offers 

attractive properties in imaging, the exploring of using its properties in various image 

applications is currently at its infancy.  Since the SVD has many attractive properties have not 

been utilized, this paper contributes in using these generous properties in newly image 

applications and gives a highly recommendation for more research challenges. In this paper, the 

SVD properties for images are experimentally presented to be utilized in developing new SVD-

based image processing applications. The paper offers survey on the developed SVD based 

image applications. The paper also proposes some new contributions that were originated from 

SVD properties analysis in different image processing. The aim of this paper is to provide a 

better understanding of the SVD in image processing and identify important various 

applications and open research directions in this increasingly important area; SVD based image 

processing in the future research 

The SVD is the optimal matrix decomposition in a least square sense that it packs the 

maximum signal energy into as few coefficients as possible. Singular value decomposition (SVD) 

is a stable and effective method to split the system into a set of linearly independent 

components, each of them bearing own energy contribution. Singular value decomposition 

(SVD) is a numerical technique used to diagonalizable matrices in numerical analysis. SVD is an 

attractive algebraic transform for image processing, because of its endless advantages, such as 

maximum energy packing which is usually used in compression. Ability to manipulate the image 

in base of two distinctive subspaces data and noise subspaces, which is usually uses in noise 

filtering and was utilized in watermarking applications. Each of these applications exploit key 

properties of the SVD. Also, it is usually used in solving of least squares problem, computing 

pseudo- inverse of a matrix and multivariate analysis. SVD is robust and reliable orthogonal 

matrix decomposition methods, which is due to its conceptual and stability reasons becoming 

more and more popular in signal processing area. SVD can adapt to the variations in local 

statistics of an image. Many SVD properties are attractive and are still not fully utilized. This 

paper provides thoroughly experiments for the generous properties of SVD that are not yet 

totally exploited in digital image processing. The developed SVD based image processing 

techniques were focused in compression, watermarking and quality measure. Experiments in 

this paper are performed to validate some of will know but unutilized properties of SVD in 

image processing applications. This paper contributes in utilizing SVD generous properties that 



are not unexploited in image processing. This paper also introduces new trends and challenges 

in using SVD in image processing applications. Some of these new trends are well examined 

experimentally in this paper and validated and others are demonstrated and needs more work 

to be maturely validated. This paper opens many tracks for future work in using SVD as an 

imperative tool in signal processing.  Organization of this paper is as follows. Section two 

introduces the SVD. Section three explores the SVD properties with their examining in image 

processing. Section four provides the SVD rank approximation and subspaces-based image 

applications. Section five explores SVD singular value-based image applications. Section six 

investigates SVD singular vectors-based image applications. Section seven provides SVD based 

image applications open issues and research trends.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                              

 

 

 



SVD IMAGE PROPERTIES 

Naveena.P, II Year 

SVD is robust and reliable orthogonal matrix decomposition method. Due to SVD 

conceptual and stability reasons, it becomes more and more popular in signal processing area. 

SVD is an attractive algebraic transform for image processing. SVD has prominent properties in 

imaging. This section explores the main SVD properties that may be utilized in image 

processing. Although some SVD properties are fully utilized in image processing, others still 

need more investigation and contributed to. Several SVD properties are highly advantageous 

for images such as; its maximum energy packing, solving of least squares problem, computing 

pseudo- inverse of a matrix and multivariate analysis. A key property of SVD is its relation to the 

rank of a matrix and its ability to approximate matrices of a given rank. Digital images are often 

represented by low rank matrices and, therefore, able to be described by a sum of a relatively 

small set of Eigen images. This concept rises the manipulating of the signal as two distinct 

subspaces. Some hypotheses will be provided and verified in the following sections. For a 

complete review, the theoretical SVD related theorems are firstly summarized, and then the 

practical properties are reviewed associated with some experiments.  SVD Subspaces: SVD is 

constituted from two orthogonal dominant and subdominant subspaces. This corresponds to 

partition the M-dimensional vector space into dominant and subdominant subspaces. This 

attractive property of SVD is utilized in noise filtering and watermarking

For SVD decomposition of an image, singular value (SV) specifies the luminance of an image 

layer while the corresponding pair singular vectors (SCs) specify the geometry of the image 

layer. The largest object components in an image found using the SVD generally correspond to 

Eigen images associated with the largest singular values, while image noise corresponds to 

Eigen images associated with the SVs  

 PCA versus SVD: Principle component analysis (PCA) is also called the Karhunen-Loéve 

transform (KLT) or the hoteling transform. PCA is used to compute the dominant vectors 

representing a given data set and provides an optimal basis for minimum mean squared 

reconstruction of the given data. The computational basis of PCA is the calculation of the SVD of 

the data matrix, or equivalently the eigenvalues decomposition of the data covariance matrix 

SVD is closely related to the standard eigenvalues-eigenvector or spectral decomposition of a 

square matrix X, into VLV’, where V is orthogonal, and L are diagonal. In fact, U and V of SVD 

represent the eigenvectors for XX’ and X’X respectively. If X is symmetric, the singular values of 

X are the absolute value of the eigenvalues of X. SVD Multiresolution: SVD has the maximum 

energy packing among the other transforms. In many applications, it is useful to obtain a 

statistical characterization of an image at several resolutions. SVD decomposes a matrix into 

orthogonal components with which optimal sub rank approximations may be obtained. With 



the multiresolution SVD, the following important characteristics of an image may be measured, 

at each of the several levels of resolution: isotropy, spercity of principal components, self-

similarity under scaling, and resolution of the mean squared error into meaningful 

components.SVD Oriented Energy: In SVD analysis of oriented energy both rank of the problem 

and signal space orientation can be determined. SVD is a stable and effective method to split 

the system into a set of linearly independent components, each of them bearing its own energy 

contribution. SVD is represented as a linear combination of its principle components, a few 

dominate components are bearing the rank of the observed system and can be severely 

reduced. The oriented energy concept is an effective tool to separate signals from different 

sources, or to select signal subspaces of maximal signal activity and integrity. Recall that the 

singular values represent the square root of the energy in corresponding principal direction. 

The dominant direction could equal to the first singular vector V1 from the SVD decomposition. 

Accuracy of dominance of the estimate could be measured by obtaining the difference or 

normalized difference between the first two SVs.Some of the SVD properties are not fully 

utilized in image processing applications. These unused properties will be experimentally 

conducted in the following sections for more convenient utilization of these properties in 

various images processing application. Much research work needs to be done in utilizing this 

generous transform. 

 

 

 

 

 

 

 

 

                                               

 

 

 

 

 



Discrete cosine transforms in image processing 

Nivetha.A, II Year 

A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of 

a sum of cosine functions oscillating at different frequencies. DCTs are important to numerous 

applications in science and engineering, from lossy compression of audio (e.g. MP3) and images 

(e.g. JPEG) (where small high-frequency components can be discarded), to spectral methods for 

the numerical solution of partial differential equations. The use of cosine rather than sine 

functions is critical for compression, since it turns out (as described below) that fewer cosine 

functions are needed to approximate a typical signal, whereas for differential equations the 

cosines express a particular choice of boundary conditions. 

In particular, a DCT is a Fourier-related transform similar to the discrete Fourier 

transform (DFT), but using only real numbers. The DCTs are generally related to Fourier series 

coefficients of a periodically and symmetrically extended sequence whereas DFTs are related to 

Fourier series coefficients of a periodically extended sequence. DCTs are equivalent to DFTs of 

roughly twice the length, operating on real data with even symmetry (since the Fourier 

transform of a real and even function is real and even), whereas in some variants the input 

and/or output data are shifted by half a sample. There are eight standard DCT variants, of 

which four are common. 

The most common variant of discrete cosine transform is the type-II DCT, which is often 

called simply "the DCT", Its inverse, the type-III DCT, is correspondingly often called simply "the 

inverse DCT" or "the IDCT". Two related transforms are the discrete sine transform (DST), which 

is equivalent to a DFT of real and odd functions, and the modified discrete cosine transform 

(MDCT), which is based on a DCT of overlapping data. Multidimensional DCTs (MD DCTs) are 

developed to extend the concept of DCT on MD Signals. There are several algorithms to 

compute MD DCT. A new variety of fast algorithms are also developed to reduce the 

computational complexity of implementing DCT. 

The DCT, and the DCT-II, is often used in signal and image processing, especially for lossy 

compression, because it has a strong "energy compaction" property: in typical applications, 

most of the signal information tends to be concentrated in a few low-frequency components of 

the DCT. For strongly correlated Markov processes, the DCT can approach the compaction 

efficiency of the Karhunen-Loève transform (which is optimal in the decorrelation sense). As 

explained below, this stem from the boundary conditions implicit in the cosine functions. 
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DCT-II (bottom) compared to the DFT (middle) of an input signal (top). 

A related transform, the modified discrete cosine transform, or MDCT (based on the 

DCT-IV), is used in AAC, Verbs, WMA, and MP3 audio compression.DCTs are also widely 

employed in solving partial differential equations by spectral methods, where the different 

variants of the DCT correspond to slightly different even/odd boundary conditions at the two 

ends of the array.DCTs are also closely related to Chebyshev polynomials, and fast DCT 

algorithms (below) are used in Chebyshev approximation of arbitrary functions by series of 

Chebyshev polynomials. 

Multidimensional DCTs (MD DCTs) have several applications mainly 3-D DCT-II has 

several new applications like Hyper spectral Imaging coding systems, variable temporal length 

3-D DCT coding, video coding algorithms, adaptive video coding and 3-D Compression. Due to 

enhancement in the hardware, software and introduction of several fast algorithms, the 

necessity of using M-D DCTs is rapidly increasing. DCT-IV has gained popularity for its 

applications in fast implementation of real-valued polyphone filtering banks, lapped orthogonal 

transform and cosine-modulated wavelet bases. The DCT, and the DCT-II, is often used in signal 

and image processing, especially for lossy compression, because it has a strong "energy 

compaction" property: in typical applications, most of the signal information tends to be 

concentrated in a few low-frequency components of the DCT. For strongly correlated Markov 

processes, the DCT can approach the compaction efficiency of the Karhunen-Loève transform 

(which is optimal in the decorrelation sense). As explained below, this stem from the boundary 

conditions implicit in the cosine functions. Like any Fourier-related transform, discrete cosine 

transforms (DCTs) express a function or a signal in terms of a sum of sinusoids with different 

frequencies and amplitudes. Like the discrete Fourier transform (DFT), a DCT operates on a 

function at a finite number of discrete data points. The obvious distinction between a DCT and 

a DFT is that the former uses only cosine functions, while the latter uses both cosines and sines 

(in the form of complex exponentials). However, this visible difference is merely a consequence 

of a deeper distinction: a DCT implies different boundary conditions from the DFT or other 

related transforms. 

The Fourier-related transforms that operate on a function over a finite domain, such as 

the DFT or DCT or a Fourier series, can be thought of as implicitly defining an extension of that 

function outside the domain. Extension of the original function. A DCT, like a cosine transform, 

implies an even extension of the original function. However, because DCTs operate on finite, 

discrete sequences, two issues arise that do not apply for the continuous cosine transform. 

First, one has to specify whether the function is even or odd at both the left and right 

boundaries of the domain (i.e. the min-n and max-n boundaries in the definitions below, 
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respectively). Second, one has to specify around what point the function is even or odd. 

Consider a sequence abcd of four equally spaced data points, and say that we specify an even 

left boundary. There are two sensible possibilities: either the data are even about the sample a, 

in which case the even extension is dcbabcd, or the data are even about the point halfway 

between a and the previous point, in which case the even extension is dcbaabcd (a is repeated). 

These different boundary conditions strongly affect the applications of the transform and lead 

to uniquely useful properties for the various DCT types. Most directly, when using Fourier-

related transforms to solve partial differential equations by spectral methods, the boundary 

conditions are directly specified as a part of the problem being solved. Or, for the MDCT (based 

on the type-IV DCT), the boundary conditions are intimately involved in the MDCT's critical 

property of time-domain aliasing cancellation. In a subtler fashion, the boundary conditions are 

responsible for the "energy compactification" properties that make DCTs useful for image and 

audio compression, because the boundaries affect the rate of convergence of any Fourier-like 

series. 

In particular, it is well known that any discontinuities in a function reduce the rate of 

convergence of the Fourier series, so that more sinusoids are needed to represent the function 

with a given accuracy. The same principle governs the usefulness of the DFT and other 

transforms for signal compression; the smoother a function is, the fewer terms in its DFT or DCT 

are required to represent it accurately, and the more it can be compressed. (Here, we think of 

the DFT or DCT as approximations for the Fourier series or cosine series of a function, 

respectively, in order to talk about its "smoothness".) However, the implicit periodicity of the 

DFT means that discontinuities usually occur at the boundaries: any random segment of a signal 

is unlikely to have the same value at both the left and right boundaries. (A similar problem 

arises for the DST, in which the odd left boundary condition implies a discontinuity for any 

function that does not happen to be zero at that boundary.) In contrast, a DCT where both 

boundaries are even always yields a continuous extension at the boundaries (although the 

slope is generally discontinuous). Therefore DCTs, and in particular DCTs of types I, II, V, and VI 

(the types that have two even boundaries) generally perform better for signal compression 

than DFTs and DSTs. In practice, a type-II DCT is usually preferred for such applications, in part 

for reasons of computational convenience. 
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